
Failure prediction: what to do with unpredicted 
failures? 

Mohamed Slim Bouguerra*, Ana Gainaru* and Franck Cappello* 
*INRIA UIUC and ANL Joint Laboratory for Petascale Computing 

Abstract-As large parallel systems increase in size and 
complexity, failures are inevitable and exhibit complex space 
and time dynamics. Several key results have demonstrated that 
recent advances in event log analysis can provide precise failure 
prediction. The state of the art in failure prediction provides a 
ratio of correctly identified failures to the number of all predicted 
failures of over 90% and able to discover around 50% of all 
failures in a system. However, large parts of failures are not 
predicted and are considered as false negative alerts. Therefore, 
developing efficient fault tolerance strategies to tolerate failures 
requires a good perception and understanding of failure predic­
tion characteristics. To understand the properties of false negative 
alerts, we conducted a statistical analysis of the probability 
distribution of such alerts and their impact on fault tolerance 
techniques. specifically we studied failures logs from different 
HPC production systems. We show that (i) the false negative 
distribution has the same nature as the failure distribution (ii) 
After adding failure prediction, we were able to infer statistical 
models that describe the inter-arrival time between false negative 
alerts and hence current fault tolerance can be applied to these 
systems. Moreover, we show that the current failures traces have 
a high correlation between the failure inter-arrival time that can 
be used to improve the failure prediction mechanism. Another 
important result is that checkpoint intervals can still be computed 
from an existing first-order formula. 

I. INTRODUCTION AND BACKGROUND 

The development and improvement of fault-tolerance 
mechanisms need realistic models in order to handle the 
failure occurrences in large-scale distributed systems. Tradi­
tional models have investigated failures in high performance 
computing systems (HPC) at much smaller scale, and of­
ten under the assumption of independence between failures. 
However, more recent studies have shown evidence that time 
patterns, correlations, and other time-varying behavior exist in 
the occurrence of failures. 

With the introduction of failure prediction, a new direction 
of study has been opened. A complement to the classic preven­
tive checkpoint-restart approach is failure avoidance, by which 
the occurrence of a fault is predicted and proactive measures 
are taken. This approach requires a reliable prediction system 
to anticipate failures and their corresponding locations. In 
general, two types of predictions are possible for HPC systems: 
(1) state prediction, where algorithms estimate the state of 
each node, and (2) failure prediction, where algorithms provide 
information about when and where failures will occur in the 
near future. The first type uses the states to decide whether a 
job can be scheduled on a specified node [30] . In this paper we 
use the second type. Specifically, we apply the ELSA tool [11] 
on historic logs generated by different HPC systems in order to 
record the predictions and conduct whetherstatistical analysis. 

Before starting the analysis, we define some parameters 
and notations concerning failure prediction. A true positive 
alert is represented by a correct prediction that ends up with 
an actual failure in the system. False negative alerts represent 
actual failures that were not predicted by our method. False 
positives are predicted failures that did not actually happen in 
the system. Precision can be seen as a measure of fidelity; 
it represents the proportion of correct found anomalies to all 
identified anomalies. Mathematically the precision is given 
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Failure prediction techniques are based on the observation 
that an error propagation chain exists between the initial fault 
in the system and its corresponding events [27]. ELSA's 
approach assumes that faults generate a number of errors 
that could be observable at the system level, represented 
by notifications in the log files . The model used by ELSA 
improves other prediction techniques by considering the fact 
that different failures have different distributions and create 
different symptoms in the system. Current state-of-the-art 
approaches in failure prediction for HPC systems are based 
on data-mining algorithms and do not distinguish between the 
behavior of different failures . ELSA was shown to overcome 
the limitations of these approaches and was successfully ap­
plied on different systems, predicting approximately 45% of 
failures with a precision of 95%. 

To benefit from failure prediction, we have to deal with 
several new challenges. One of the challenges is how to handle 
the 55% of the failures that are not visible by the prediction 
module. Also, false positives pose additional overheads on 
fault tolerance techniques. Thus, discovering and modeling 
the arrival of the unpredicted failures and true positive alerts 
influence the choice of the optimal fault tolerance strategy. 
Important objective addressed in this work is to compute the 
new checkpoint interval dedicated to the 55% of the failures. 
To this end, we first analyze the original distribution of failure 
arrival times and we use it to model the distribution of the 
unpredicted failure . Both distributions are used to describe the 
fundamental parameters that influence the tradeoff between 
the overhead due to fault tolerance actions and the amount 
of lost work due to failures in the presence of a prediction 
module. We show that a direct use case of this model is 
to compute the checkpoint interval dedicated to unpredicted 
failures. This study were conducted on a variety of systems 
recently in production at two US national laboratories. The 
results show that failure prediction mechanisms are able to 
detect the nonrandomness and correlation. 



The rest of this paper is organized as follows. In Section II 
we review current related work and highlight our contributions. 
Section III presents the data we analyze throughout the rest 
of the paper. In Section IV we introduce the prediction 
method and its results on the proposed datasets. In Section 
V we develop our mathematical model for predicted and 
non predicted failure inter-arrival time. In Section VI, we 
present the experimental and simulation-based evaluations of 
our analytical model. We conclude this paper in Section VII 
with a brief summary and look at future work. 

II. RELATED WORK 

The work proposed in this paper differs from the existing 
work in two ways: what is measured and point is what is 
modeled. In terms of measurements, we consider the interval 
of time between false negative alerts versus the interval of time 
between failures. 

Previous studies [29), [14), [15) focused on characterizing 
failures in several different distributed systems. Both [28) 
and [13) analyzed different HPC systems and found that 
Weibull distribution provides a good fit for the failure char­
acteristic. The work in [34) has the same conclusion but also 
reveals the impact of filtering the failures that do not affect jobs 
on the distribution parameters and numerical characteristics. 
An example of an observation made in the paper is the way the 
probability of job interruption is related with existing historical 
records of application-related interruptions. The relationship 
between workload and failure rate in large-scale systems was 
also studied in [26) with similar conclusions. 

The impact of failures and checkpointing protocols on 
application efficiency are studied in [18). The authors analyze 
Blue GenelL logs for six months by using temporal filtering 
and then by studying the job interruptions through simulation. 
A study that uses real job logs is presented in [34], where the 
analysis focuses on the impact of failures on the jobs in the 
whole system and not on specific failures . In [17], the authors 
do a similar study but with the focus on characteristics of 
troubleshooting from large-scale storage systems. 

Most of these studies assume that failures occur indepen­
dently, or they disregard the correlation of the time interval 
between failures. In this work we show that time-correlated 
failures have significant implications for proactive fault toler­
ance strategies. 

Concerning the second point, we model in our work the 
distribution of the unpredicted failures versus the study done 
by related work by analyzing all failure occurrences. 

A number of failure prediction methods, are presented in 
the literature. In [6], the authors introduce the concept of 
dynamic metalearning, where the prediction engine switches 
between different methods depending on different rules. A 
similar but less complex method can be seen in [9), where 
the authors extract rules for a fixed time window and generate 
association rules between fatal and non fatal events. Another 
approach for analyzing the logs is given in [7), where usage 
and failure logs are investigated by extracting past and future 
failure distributions for each failure instance. Based on these 
features , different decision tree classifiers are used in order to 
predict failures within a fixed time window. 

In [25], the authors present middleware between the ap­
plication and different analysis modules. One of the possi­
ble usages for their system is to facilitate proactive fault 
tolerance mechanisms such as preemptive job migration for 
fault predictors and other decision-making engines that rely 
on distributed failure information. However, they offer the 
middleware without having any of the system implemented. In 
our previous work [I], we implemented a hybrid fault tolerance 
protocol by combining preventive and proactive checkpointing 
strategies and modeled the impact of such a protocol on 
future exascale systems. The distributions of failures detected 
by a prediction system and of non detected failures greatly 
influence the overhead that fault tolerance techniques put on 
HPC applications [1). 

In this paper, we focus on modeling the failures in the 
presence of a prediction model. To the best of our knowledge, 
all the existing studies focus on modeling all failures that occur 
in a system or failures that affect job executions and do not 
deal with how prediction changes their characteristics. 

III. DATA 

The proposed analysis is based on event logs taken from 
different HPC. We analyzed 22 high-performance computing 
systems that have been in production use at Los Alamos 
National Laboratory (LANL) and a Blue GenelL machine from 
Lawrence Livermore National Laboratories (LLNL). Traces 
represent different periods of time of production of high per­
formance computing system logs. Table I reports the number 
of nodes, time intervals, and number of events that each 
trace contains. The BlueGenelL has 128K PowerPC 440 700 
MHz processors, which are organized into 128 midplanes. 
A midplane is the granularity of job allocation. A midplane 
contains 16 node cards that represent the compute nodes, 4 I/O 
cards, and 24 midplane switches. Events are logged through the 
Machine Monitoring and Control System (CMCS) and stored 
in a DB2 database engine. The granularity of the Reliability 
Availability and Serviceability reporting system (RAS) is less 
than I second. Traces for systems at LANL represent events 
generated by a set of diverse systems. Systems vary widely 
in size, with different numbers of nodes ranging from 1 to 
1,024 and different numbers of processors per node ranging 
from 4 to 6,152. The hardware architecture used by each 
system presents a large variety of different processor types 
and memory models. The system we are focusing on in our 
study, system 20, consists of256 nodes and Ik processors, each 
with 16 GB of memory. We chose these systems because they 
have been analyzed in many papers and have been accepted 
as representative of HPC production systems. Most workloads 
for all systems are large-scale, long-running 3D scientific 
simulations. The main characteristic of these applications is 
the interleaving of hour long periods of CPU computation with 
minute periods of I/O for checkpointing and with periods of 
scientific visualization. 

A. Failure identification 

A preliminary step before focusing on the prediction 
method is to analyze the failures of each system. All traces 
offer information about events generated in the syslog for each 
system without specifically identifying the failures. 



TABLE I. INFORMATION A BOUT SYSTEM TRACES 

System Time Interval MTIJF (h) Number of Events 
Blue GenelL June 2U05 - January 2U05 24.4 4,747,963 

LANL systems December 1996 - November 2005 From 13 to 125 43 3,490 per system 

The 22 systems that were in production at LANL com­
plement the system logs with manually annotated failure logs, 
System administrators at LANL registered the time for every 
failure in the systems and gave a brief explanation for all. By 
correlating the failures in this annotated log and the events in 
the syslog, we were able to decide which event represents a 
failure, 

Blue GenelL system (BGIL) offers only syslog traces and 
no information about failures except the severity. We use the 
filtering methods and anomaly detection techniques described 
in [10] to isolate events that have the potential of being failures 
after which we manually investigate all event types. Each 
failure event in our study does not necessarily correspond to 
a unique physical failure in the system hardware or software. 
Some of our reported failures, especially different types of 
failures that are reported in proximity to each other, may 
represent the same failure encountered by subsequent jobs. 
However, severity field can be misleading in many cases. For 
example in [31], while analyzing the Blue GenelL system, 
the authors found that the severity field of the log messages 
performed poorly as an alert indicator and that after incorpo­
rating this metric into the failure detection algorithm the result 
would produce a false positive rate of 59%. The problem arises 
because of the lack of information about the exact duration of 
each failure. It is an extensive and difficult process to pinpoint 
the real root cause of each failure event or its actual duration. 
If this is not done at production time by system administrators 
registering information about every failure at the moment the 
failure occurs, it is almost impossible to get this information 
postmortem. For this reason, in this paper we do not isolate 
the impact of job execution on the failure pattern. Failure 
identification is an important step in the analysis of a system 
since both the prediction and the failure distribution analysis 
rely on an accurate set of failure events. 

B. Failure statistics 

We analyzed all the failures and extracted their statistical 
properties for each of the systems in Tables I and II. In this 
study we consider the annotated failure information for the 
LANL systems and the filtered set of failures for the Blue 
Gene machine. For the LANL systems, the system adminis­
trators divided the failure types into six categories: facilities, 
hardware, network, software, human, and unknown [29]. We 
clustered the Blue GenelL events into similar categories in 
order to have a unified view of all the systems. Table II shows 
the percentage of each type of failure for each system. Human 
error has no representation for the Blue GenelL system because 
traces do not give context information about the failures and 
so the actual root cause is unknown. Taking the analysis a step 
further, we investigate in the next section how the prediction 
results change when the analysis is done on different categories 
of failures. 

TABLE II. PERCENTAGE OF ERROR TYPES 

LANL Blue GenelL 
Facilities 2% Node cards 16% 
Hardware 62% Midplane switch 4% 
Human Error <1% Memory 22% 
Network Error 2% Network 17% 
Software 23% APP_IO 25% 

IV. FAILURE PREDICTION 

In the following subsections we present the methodology 
used for preprocessing the log files in order to predict failures. 
An overview of the methodology is presented in [10]. Our trace 
analysis comprises two phases: the offline phase, where we 
identify failures and construct the correlation chains between 
non faulty events and failures and between failures themselves, 
and the online phase, where the chains are used for prediction. 
The offline phase uses the first three to five months for each 
of the traces; and the rest time is used for online prediction. 

A. Preprocessing 

In the preprocessing step, we use the Hierarchical Event 
Log Organizer (HELO [12]) on the raw logs, which generates 
a list of message templates that represent frequently occurring 
messages with similar syntactic patterns. These templates 
represent regular expressions that describe different events in 
a system. We consider each template as representing an event 
type, and we analyze them separately by extracting a signal 
for each of them and characterizing their behavior and the 
correlations between them [10]. 

In general, filtering is used to reduce the size of the ana­
lyzed dataset without losing the log's characteristics. Contrary 
to the general use, our filtering method, described in [10], 
focuses on removing the normal behavior of the system in 
order to highlight the outliers. This allows us to isolate events 
related to failures and facilitates the extraction of event patterns 
by the prediction modules. 

B. Failure prediction 

For the prediction phase we use two separate methods for 
which we analyze their characteristics in the next sections. The 
first method uses a statistical-based method and is used only 
as a complement to the main prediction module. We describe 
this technique and study how it influences the results in the 
experiments section. 

The main prediction method extracts correlations between 
non fatal and fatal events by using signal analysis to character­
ize events and data-mining algorithms to find patterns between 
them regardless of their behavior. The result of the offline 
phase is chains of events that end with a failure that might 
affect an application running on different nodes of a system. 
The online phase monitors the incoming stream of events and 
decides when to trigger a prediction. Also, modules in this 
phase update the correlations and the characteristics of events 



TABLE III. BGL: BREAKDOWN OF PREDICTION RESULTS 

Failure Type Number Failures Number Events Recall 
Node Cards 6 96 61% 
Memory 251 8206 45% 
Network 941 1055 15% 
APP 10 1019 1723 62% 
Midplane switches 52 166 41% 

TABLE IV. LANL: BREAKDOWN OF PREDICTION RES ULTS 

Facilities Hardware Human Error 
Precision 89.2% 93.8% 80.8% 
Recall 38% 45.1% 9.2% 

Network Error Software Unknown 
Precision 91.2% 93.7% 91.6% 
Recall 42.8% 41.1% 23.4% 

behavior to reflect the state of the entire system at different 
moments. Details about this process can be found in [11]. 

For this paper, the output of the prediction method is a list 
of predictions, each containing a timestamp and a system node. 
The list contains both correct predictions and false positives. 
Recall and precision values for all systems can be seen in 
Tables I, III, and IV. 

We divide the predicted events into different categories. 
The results for system 20 from LANL are presented in 
Table IV by following the same failure clustering as in the 
previous section. For Blue GenelL we focused our attention on 
the most frequent failure categories. The results are presented 
in Table III. In general, there is a large difference of coverage 
between different types of failures, which indicates that certain 
failure types appear in patterns and correlations more than 
do others. Depending on the resources an application might 
use and hence which parts of the system are more stressed 
and prone to failures, the overheads and benefits of preventive 
checkpointing techniques might vary. 

V. STATISTICAL MODELING 

All the decision makers of the existing fault tolerance 
strategies and mechanisms are based on the mathematical 
stochastic models that describe the inter-failures arrival time 
and the failures prediction alert times. Technically the decision 
makers uses the inter-failures arrival time models as input to 
manage the tradeoff between the overhead due to fault toler­
ance actions such as checkpointing, migration, or replication 
versus the amount of lost work due to failures. 

The objective of this section is to discover the mathematical 
model that can be used to describe these two fundamentals 
inputs. We focus mainly on the two stochastic processes. 

The first is the classical stochastic model that describes 
the inter-arrival time between failures. This model is used, for 
instance, to compute the optimal interval between checkpoints 
[5], [33], [2] or to schedule jobs in order to minimize comple­
tion time and maximize the reliability in same time [16]. 

The second stochastic process considered in this work 
concerns the interval of time that separates two unpredicted 
failures (two false negative alerts). To the best of our knowl­
edge this is the first work that model this stochastic process. 

In fact recent proactive fault tolerance strategies [I], [21] com­
bine proactive fault tolerance action and preventive tolerance 
actions to handle failures. In those works the distribution of 
the false negative alerts is used as input to schedule preventive 
checkpoints. 

The most common approach for describing this kind of 
stochastic process is to model the time between failures or 
false negative alerts by a sequence of continuous and positive 
random variables denoted by U1 , U2 ,···, Ui for failures and 
Y1 , Y2 , •.. , Yi for false negative alerts. Ui or Yi is the interval 
interval of time between the i-I and i failure or false negative 
alert. Figure 1 shows an example of the relation between the 
sequence Yi and the sequence Ui . Suppose now that failures I, 
3, and 4 are correctly predicted, in this case the false negative 
intervals are given by Y1 = U1 + U2 and Y2 = U3 + U4 + U5 . 

Recall that Ui denotes the interval of time between failure i 
and failure i - 1. Based on this model, we infer the probability 

False negative alerts 
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Fig. I . Failure and false negative intervals 

distribution of U and Y from the empirical data. The data used 
in this work reports failures of each node. Indeed, building 
a stochastic model for each node is too expensive in terms 
of computation and irrelevant for the existing fault tolerance 
decision-makers. In fact one needs a model that describes the 
failure arrival that concerns the entire cluster used to run the 
application. In this work we consider the cluster as one unit. 
Thus, formally, the failure time of a system is the first failure 
that occurs on any system node. However, recall that this model 
is valid only if the intervals of time between failures or false 
negative alerts are independent and identically distributed. In 
the next section we investigate whether the raw data validates 
this hypothesis of true randomness. 

A. Randomness testing 

As a preliminary phase and before distribution fitting we 
run several tests of randomness to identify whether the failures 
extracted have a truly random behavior. The objective of this 
phase is to decide whether the data set is from a random 
process and does not exhibit any trends of periodicity, auto­
correlation, or non-stationarity. We note that it is statistically 
irrelevant to fit probability distribution to nonrandom data, 
since such data don't fill the basic assumption of all standard 
statistical tests, namely is that the sample is obtained by a 
random procedure. Also building a statistical model for this 
nonrandom data is difficult given the change in terms of the 
trend over time. In this section the objective is twofold. 

1) We check the randomness hypothesis of failure inter­
vals and identify whether it is possible to fit the data 
to classic probability distribution functions. Also, by 
studying the randomness of the false negatives alerts, 
we investigate the impact of the prediction process 
on the randomness of the data. 

2) We investigate the relationship between the random­
ness of the failure intervals and the efficiency of 



the failure prediction mechanism. This will determine 
whether a dataset with a non truly random behavior 
has a better recall than does a a truly random dataset. 

J) Methodology: In the literature, randomness tests are 
classified into two categories. The first category, called para­
metric tests, is often used when we have information about the 
distribution of the data. Since we don't have any assumption 
about the distribution we need randomness tests from the non­
parametric tests category. This category contains three well­
known non-parametric tests. First we have the runs test, also 
called the Wald and Wolfowitz test [32], where each interval of 
time is compared to the mean. This test verifies that intervals 
are mutually independent. The second test called run up/down 
[3] is also similar to the runs test, it is designed to capture 
the trend of the data set by comparing each interval to the 
previous one. The third test is an autocorrelation test [19], and 
it is used to discover repeated patterns that differ only by a lag 
in time. We note that when the autocorrelation is used to detect 
nonrandomness, usually only the first lag autocorrelation is of 
interest. 

As there is no perfect method to judge randomness, we 
run the three tests over all the data. The runs test and the 
up/down test return one value, called a probability value, 
denoted by a p-value. This value is used to either reject the 
null hypothesis about the randomness of the data if the p­
value is smaller than or equal to the significant threshold, or 
confirm that the data is truly random if the p-value is greater 
than the significant threshold. As pointed in [3] and [32], for 
the first and second tests a p-value of 5% is a strong evidence 
to reject the null hypothesis about the randomness of data. For 
the autocorrelation we consider a confidence interval of 95%. 
Thus, if the value of the autocorrelation test is out of this 
confidence interval, the sample contains a high correlation of 
order 1, which implies the nonrandomness of the data. 

2) Randomness test results: Table V reports the p-values 
for the runs test and the up/down test concerning both real 
failures and false negative alerts. We note that all the statistical 
tests are based on the normal distribution assumptions. Thus, 
we have to make sure that the input samples are enough. 
According to Casella and Berge [4] a sample should contain 
more than 30 entries. Therefore, both system 22 and system 
24 are excluded from the study since they contain respectively 
17 and 23 failures. 

Highlighted cells represent the case where the data fail to 
pass the randomness test. This first result shows that more 
than the half of the failure traces data concerning the failures 
intervals fail to pass the test of randomness. This implies that 
fitting classical probability distribution to this data is irrelevant, 
since the sequence of interval is not random. Hence all the 
existing works that use a failure distribution to make decisions 
about checkpointing or scheduling jobs cannot be used in this 
case. 

Most of the traces concerning the interval of time sepa­
rating the unpredicted failures pass both runs and up/down 
tests except for four cluster. Thus, the failures with nonrandom 
pattern are predicted and removed from the traces. Intuitively, 
this means that the failure prediction mechanism catches 
most of the failures with nonrandom occurrences. Thanks to 
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failure prediction we can use statistical fitting techniques to 
mathematically model the false negative alerts. 
To investigate this intuitive result further and to study the 
impact of the nonrandom ness on the prediction process, we 
show in Figure 2 the autocorrelation values using the first 
lag. Horizontal lines in Figure 2 represent the 95% confidence 
interval. The autocorrelation test reveals also that most of the 
data concerning the failures intervals exceed the confidence 
interval. This result confirms that failure traces are not truly 
random and show a high correlation. This also confirms pre­
vious studies [14], [28] that report a high correlation between 
failures. As with the for runs and up/down tests, after using the 
failures prediction, the false negative traces are truly random 
except for few a systems. 

Figure 2 shows that systems 9, 10, 11, 12, 13, 14, and 15 
present a high correlation. This can be explained by the fact 
that those clusters have the same hardware type, denoted by 
the type F in [28]. Among this set of systems the correlation 
is different because the in system size. One would expect that 
the bigger the size, the higher the correlation; but this is not 
true. In fact the smallest clusters 9, 10, and 12 have the highest 
correlation. 

Bars in Figure 4 represent the recall ratio for the different 
computing systems. This figure points out another important 
finding. The recall ratio is related to the amount of correlations 
that the traces contain. For instance, for system 21 which 
has a smaller recall, Figure 2 indicates that it also has the 
smallest amount of correlation. We have the same observation 
for system 10; again the recall is high, and it has the highest 
amount of correlation. Figure 4 shows that we can still get 
high recall even if the trace does not contain a high correlation 
of order 1, for example, system 6 has the highest recall and 
a small correlation value. Considering that a trace is random 
only if it passes the three tests, only 6 of 20 computing systems 
with a truly random failure sequence can be used to infer 
statistical models to describe mathematically the arrival time of 
failures. We note that for the systems without true randomness, 
no failure distribution could be estimated. Thus, one cannot 
use fault tolerance strategies such as those in [5], [33], [1], 
[21] to compute the optimal interval between checkpoints. One 
solution could be to change the scale and consider failures 
on the node level, in order to insulate the nodes with high 



correlation. Also, failures with truly random behavior lead 
to false negative samples that are truly randomly distributed. 
The important finding is that, thanks to the failure prediction 
mechanism that catches the failures with periodic patterns and 
correlation, we can infer statistical models that describe the 
inter-arrival time between false negative alerts for IS of 20 
computing systems. 

0.3 
.Overlapped predictions 

• Unique predictions 

Fig. 3. Recall for the statistical-based prediction method 
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Fig. 4. Recall ratio for various systems 

The lack of correlation between Figures 2 and 4 influenced 
us to implement a statistical-based prediction method, similar 
to the one from [6] that uses the failure distribution for each of 
the analyzed systems. statistical-based methods emphasize dis­
covering probabilistic characteristics among failure events and 
then using the obtained characteristics for failure prediction. 
Our method basically involves two phases. In the offline phase 
it obtains and verifies statistical characteristics of failures, for 
example temporal correlations from the training data, and in 
the online phase it produces a warning if statistical patterns 
are observed. 

The results are closely related to the amount of correlation 
between inter-arrival time of failures in the LANL traces. Fig­
ure 3 presents how statistical-based methods can complement 
our correlation-based prediction and indicates the impact on 
the recall value for the LANL systems. 

Clearly, system 9 presents a strong correlation between 
failures, and as a consequence the prediction technique of­
fers high recall values. In some cases, systems that do not 
have a strong correlation are misinterpreted by the prediction 
technique and thus create a large number of false positives, 
decreasing the overall precision. This is the case of system 8, 
where the statistical-based method discovers several weak false 

correlations that are later used for false predictions. To avoid 
this problem, we decided to keep only very strong predictions 
and filter the rest. Figure 3 presents only the systems that 
have strong cOlTelations, and as a result the gain in recall 
outperforms the loss in precision. 

On closer examination, we observed that the failure pre­
dicted by the statistical-based prediction method overlaps with 
some of our original predictions. Moreover, the introduction 
of the new predictor does not change the shape of the recall 
from Figure 4 and the improvement in recall does not exceed 
15%. This observation led us to an important conclusion, 
specifically that the statistical-based prediction technique is 
not universal and provides different results depending on the 
system. Techniques like the one in [6] can be used only for 
systems with high correlations for the failure inter-arrival time, 
and their results are specific to the system they analyze. 

B. Distribution fitting 

The principle behind fitting distributions to data is to find 
the type of distribution ( normal, lognormal, gamma, beta, etc) 
and the value of the parameters (mean, variance, etc) that give 
the highest probability of producing the observed data. The 
objective here is to infer a mathematical model that can be 
used to describe formally the inter-arrival time between failures 
and false negative alerts. We then investigate the relationship 
between the failures distribution without prediction and the 
probability distribution of the false negative alerts. Only traces 
with truly random behaviors are relevant to be used to find 
a good probability distribution that is a good match to the 
empirical distribution. 

1) Fitting methodology: Different methods are available to 
fit the empirical data to probability distribution functions. The 
most common methodology is: first select a set of candidate 
distributions then estimate the values of distribution parameters 
based on the empirical distribution. The best fit with the most 
likely similarity is kept. Many distributions could be used as in­
put candidate in step I. In this work we conduct the distribution 
fitting process using the commonly used distribution functions 
to model failures in HPC systems [15], [14], [28], namely, 
exponential, Weibull, log-normal, normal, and gamma. In the 
second step we compute the best parameter values for each 
candidate distribution. Specifically, in step 2 we look for the 
maximum likelihood estimates (MLE) [23] that are the most 
likely fit to the empirical data. We choose this method rather 
than using the moment matching method since this method is 
sensitive to outliers [8]. Technically, MLE aims to maximize 
the logarithm of the likelihood function that corresponds to 
the closet distance between the empirical distribution and 
samples resulting from distribution with certain parameters. 
We use the negative log likelihood value produced by the 
MLE to rank the different distributions. This still does not 
mean that this distribution is a good model for the empirical 
data. Thus we check also the goodness of fit between the data 
sample and synthetic sample. The literature describes dozens 
of goodness-of-fit tests, but only a handful are used in practice. 
We use the Kolmogorov-Smirnov [24] test and the standard 
probability-probability plot (PP-plot) as a visual method. The 
Kolmogorov-Smirnov test checks that the sample comes from 
the best-fitted distribution against the alternative that it does 
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Fig. 2. First lag autocorrelation coefficients 

not come from the late distribution. Also the test rejects the 
true randomness hypothesis at the 5% significance level. 

2) Fitting results: We first investigate the statistical model 
for clusters with a true random behavior for both failures 
and false negative alerts . Then we consider traces that fail 
to pass the randomness test for failures intervals and pass the 
randomness test for false negative intervals. We use the second 
time scale to estimate the failure distribution parameter. Table 
VI reports the fitting results concerning the first set of data 
where both intervals are truly random. As we can see, not all 
the probability distributions are present, but exponential and 
Weibull are the closet fit to the available data. 

We note that the parameter J.L is the mean in seconds 
for the exponential distribution. For the Wei bull parameter a 
denotes the scale and b the shape parameter. The exponential 
distribution is a good fit for the data with a coefficient of 
variation (CV) [20] close to I. This is an expected result since 
the CV of the exponential distribution is equal to 1, hence 
if the sample is taken from exponential random variables, its 
CV should be close to 1 as well. For the data with a high 
variation, Wei bull is the best fit. We notice also that systems 
have either a constant failure rate for the exponential case or a 
strictly decreasing failure rate, since all the shape parameters 
are lower than 1 for the Wei bull case. 

The second outcome from this study is the relationship 
between the initial failure distribution and the false negative 
distribution function. As can been seen in Table VI the best­
fitted distribution for the data concerning the false negative 
alerts is the same distribution for the failure intervals with dif­
ferent parameters. Hence, intuitively we can say that the failure 
prediction process does not change the initial distribution and 
affects only the scale parameters of the initial distribution. Also 
as reported in Table VII, for the case where the distribution is 
exponential, the ratio between the initial parameter J.Lu and the 
false negative parameter J.Ly is given by J.Lyl J.Lu ~ 1 - r, where 
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r = 0.45 is the recall. As with Wei bull, we have approximately 
the same shape parameter for both distributions (bu = by), 
and the scale parameters verify aulay ~ 1 - r . This means 
that the failure prediction mechanism acts as a scaling filter 
affecting only the time scale. Therefore we can avoid the fitting 
process and estimate the distribution of the false negative alerts 
using the recall and the initial failure distribution. We note that 
the failure prediction process does not have an impact on the 
variability of the data. As we can see in Table VI the coefficient 
of variation (CV) is almost the same for both data. 

The Kolmogorov-Smirnov test values (denoted by KS) in 
Table VI indicate that all the fitting successfully passes the 
test of goodness. To assess the fitting results by a visual 
method, we report in Figures 5(a) and 5(b) the PP-plots. 
Clusters are grouped based on the scale and the kind of failure 
distribution. Figure 5(a) reports the PP-plot for the exponential 
type distributions . As can be seen the PP-plot confirms that the 
exponential distribution presents a good visual filting. We have 
the same observation in Figure 5(b) reporting the PP-plot for 
Wei bull-type distribution. 

Figure 5(a) and Table VI show that systems 3, 4, and 5 
have almost the same failure distribution and the same recall, 
which leads to the same false negative distribution as well. 
We note that systems 3, 4, and 5 have exactly the same 
architecture; more precisely, they have the same processor 
type and number [22]. Moreover, Schroeder and Gibsion [28] 
report that more than 50% of the failures experienced by 
this set are CPU-related failures due to a design flaw. This 
implies that the failures observed on those three different 
systems are independent from the workload profiles or the 
applications executed on these clusters. Cluster number 6 is 
also from the same family, but it has only 32 nodes whereas 
the clusters in the other set are composed of 128 nodes. 
We observe that the ratio between the two failure rates is 
approximately 4.6, which corresponds to the ratio between 
node numbers. This observation confirms that the failure rate 



TABLE VI. STATISTICAL OF FITTING ALL RANDOM PROCESS (FITTING PARAMETERS SCALE ARE IN SECONDS) 

System N~me F~ilurcs False Negative ~ ~ 1- r 

Me~n CV Best Fit KS Mean CV Best Ht KS 4 = l -r a, 

Blue Gene/L 1040.5 0.92 ex ponential /1-" - 6243 1. 3 0.10 1888.1 1.10 exponential /1-y - 113289 0.79 0.55 
LAN L Sys 3 3595.1 1.1 exponential /1-u - 215705 0.98 6559.0 1.1 cx ponentinl 11 y - 393538 U.70 0.54 
LANL Sys 4 3409.1 J.l exponen tial /1-u - 204544 0.77 6187.0 J.J exponelili nJ J.I. - 371 218 0.99 0.54 
LANL Sys 5 3294.5 1.1 exponential /1-u - 197671 0.95 6377.9 1.2 exponential J1. y - 382671 0.35 0.51 
LANL Sys 6 16796.7 0.9 exponential /1-u - 1007800 0.81 31878.2 1.1 exponential /1- y - 19 I 2690 0. 99 0.54 

LANL Sys 23 9288.2 I.3 Wefbull au = 509380 bu - 0.846905 0.97 16272.3 1.2 Weibull a y - 895274 by = 0.851258 0.98 0.56 

(a) PP-plot systems: BlueG/L, 3, 4, 5 and 6 (b) PP-plot system 23 

Fig. 5. PP-plot and CDF for exponential type distribution (a) and Weibull-type distribution (b). 

is linearly proportional to the size of the system when the 
hardware is the same. 

Table VII reports the fitting results for the set of systems 
with nonrandom failures and random false negative alerts. 
As can be seen, the set of best fit distributions is different. 
Contrary to the previous case, here the exponential distribution, 
the Wei bull distribution, and the lognormal are the best can­
didates to model the inter-arrival time of false negative alerts. 
To double check the fitting results, we report the PP-plot in 
Figures 6 and 7 for the different systems. 

TABLE VII. STATISTICAL FITTING FOR RANDOM FALSE NEGATIVE 

System Name poise Negnt i.c 
~ean (min) cv tlest I'it KS 

LANL Sys 8 7859.6 1.4 Weiblill a - 401499 b - 0.767798 0.74 
LANL Sys 10 8247.0 3.6 WeibuTI a - 318087 b - 0.647838 0.29 
LANL Sys II 6353.5 3.0 Wei bull a - 232647 b - 0.609348 0.61 
LANL Sys 13 8164.3 3.9 lognormal /1- = II .5257 0' - 1.87004 0.14 
LANL Sys 14 I I 35 1.U 2.5 Weibull a - 391931 b - 0.559039 0.77 
LANLSys 15 12136.7 1.2 exponential /l. - 728203 0.17 
LANL Sys 16 3430.6 1.3 Wei bull a - 182624 b - 0.810939 0.69 
LANL Sys 18 8 18.6 1.5 lognormal /l. - 10.11 230' - 1.2~677 0.37 
LANL Sys 19 863.6 1.4 exponential /l. - 51 816.8 0.18 
LANL Sys 21 1986.9 2.3 lognormal /1- = 10.6382 0' - 1.46402 0.85 

One question that may be raised is whether one can model 
failure arrival times of the entire LANL computing system as 
one unit. The answer is no, since some samples in the data 
comes from process that are not non truly random and the 
only way to analyze the failure sets is to break the system into 
smaller units. This result shows the benefit of understanding 
temporal correlations and shows how one can exploit them 
for failure prediction. Moreover, it provides a new opportunity 
to design smart fault tolerance strategies and enhance the 
conventional ones. 

VI. USE CASE 

Many use cases can be developed to show the impact of 
such models. In this paper we present a case where checkpoint 
and migration are coupled in order to reduce the overall wasted 
time. The proposed fault tolerance strategy is to use migration 
as a proactive action when a prediction alert is available. Ar­
guably proactive migration alone cannot systematically avoid 
re-executing the application from scratch if failures are not 
perfectly predicted. Therefore, failure prediction and proactive 
migration should be combined with periodic checkpointing. 
However, coupling failure prediction with proactive migration 
and periodic checkpointing is not trivial. In order to provide 
significant benefits, proactive and preventive actions schedul­
ing strategies should be chosen carefully. Basically, we have to 
compute the optimal interval between periodic checkpoints and 
to decide online whether it is worthwhile to perform proactive 
migration in light of the failure prediction information. 

A. Preventive checkpoint interval 

The preventive action is to perform periodic checkpointing 
of the current application state. This action is perfonned in 
a constant amount of time, c. We introduce r to represent 
the units of useful work between two consecutive preventive 
checkpoints. In this work we consider that a unit of work 
con'esponds to a unit of time as well. We use the classical 
Young's formula r = ..j2Cj.L, where J.L is the mean time between 
unpredicted failures. 

B. Proactive migration 

The proactive action is considered efficient if and only 
if the alert is a true positive alert. In order to handle false 
positive alerts and to minimize the wasted time due to them, 
the decision to perform or not the proactive action is taken 
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(a) PP-plot systems 15 and 19 (b) PP-plot ~ystems 10 and 14 

Fig. 6. PP-plot and CDF for exponential-type distribution (a) and Weibull-type distribution (b). 

(a) PP-plot systems 13, 18 and 21 (b) PP-plot systems 8, II and 16 

Fig. 7. PP-plot and CDF for lognormal type distribution (a) and Weibull-type distribution (b). 

online according to the progress of the application since 
the last checkpoint and the precision of the alert versus the 
migration cost Let ta denote the elapsed time since the last 
checkpoint; p is the precision of the prediction mechanism, 
and m is migration cost. As shown in [1], the proactive action 
is performed if the inequality pm/p ::; ta holds; otherwise it 
will be ignored. 

C. results 

We present in this section the overall improvement thanks 
to the proposed combination. We investigate using an event­
based simulator the percentage of useful work that an ap­
plication can reach in presence of failures. To this end we 
use the traces of failures, false negative and true positive of 
the system 19 at LANL. We reply an execution considering 
several configurations of checkpoint cost between 10 and 40 
minutes. Migration is considered as constant cost at 1 minute. 
As indicated in Table VII the false negative distribution is 
exponential. Bars in Figure 8 show the overall percentage of 
useful work that an application can reach. we compare the 
proposed combination versus a classical execution using the 
Daly [5] optimal interval with proactive migration. In order 
to compute the optimal interval for Daly model we use the 
mean time between failures in the traces. This figure shows 
that the application efficiency is improved by more than 5% 
with a recall of 45%. This confirms the expected theoretical 
improvement shown in our previous work [1]. 

100% 
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Fig. 8. Overall system useful time 

VII. CONCLUSION 

A major challenge facing parallel applications on large 
scale HPC systems is failures. The situation is predicted to 
be even worst for exascale platforms. For this reason, under­
standing the temporal correlations of failures and exploiting 
them for smart checkpointing and scheduling decisions are 
critical tasks. Our study highlights that most of the available 
failure traces are not random and hence are suitable for use 
as empirical data for probability fitting. This result suggests 
that developers of failure analysis algorithms should focus on 
understanding the temporal correlations of failures. Moreover, 
we point out that the failure prediction mechanism is a good 
tool to identify and remove the nonrandomness and correlation. 
Another important, unexpected, result concerns the impact of 
the relation between the initial failure distribution and the false 
negative distribution. In this work we show that the failure 
prediction mechanism acts as a scale function and affects 



only the scale parameter. Hence, when the initial distribution 
is available, based on it, we estimate the distribution of the 
false negative alerts, which avoids the overhead of the fitting 
process. We also show that the peak of correlation on the 
initial traces has an important impact on the prediction results, 
specifically on the recall value. This influences the design of 
some adaptive fault tolerance strategies. For example, a simple 
scheduling policy could be to stop scheduling large parallel 
jobs during failure peaks. Moreover, one can devise adaptive 
fault-tolerance mechanisms that adjust the policies based on 
the information related to peaks. For example, an adaptive 
fault-tolerance mechanism can migrate the computation at the 
beginning of a predicted peak. We plan to analyze more deeply 
the set of systems with a high correlation like system 2 or 20, 
and isolate sources of nonrandomness. Doing so can lead to 
higher precision in terms of prediction. Another direction of 
future research is to investigate whether a cross-correlation 
of different time scales has an impact on the prediction 
mechanism. 
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